Gauss-Legendre principal value integration
نویسنده
چکیده
few problems lend themselves to closed-form solution, we often need to convert formal definitions into practical numerical methods. One such problem deals with the Principal Value integral, which many students encounter in a course on functions of a complex variable. However, the prospect of evaluating one numerically might seem rather daunting. To the best of my knowledge, the subject remains outside the treatments of numerical quadrature found in treatises on numerical analysis.
منابع مشابه
Iteration-Free Computation of Gauss-Legendre Quadrature Nodes and Weights
Gauss–Legendre quadrature rules are of considerable theoretical and practical interest because of their role in numerical integration and interpolation. In this paper, a series expansion for the zeros of the Legendre polynomials is constructed. In addition, a series expansion useful for the computation of the Gauss–Legendre weights is derived. Together, these two expansions provide a practical ...
متن کاملPositivity of the Weights of Extended Gauss-Legendre Quadrature Rules
We show that the weights of extended Gauss-Legendre quadrature rules are all positive.
متن کاملA New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems
In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...
متن کاملA Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations
This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
متن کاملSymmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface
This paper first presents a Gauss Legendre quadrature method for numerical integration of I 1⁄4 R R T f ðx; yÞdxdy, where f(x,y) is an analytic function in x, y and T is the standard triangular surface: {(x,y)j0 6 x, y 6 1, x + y 6 1} in the Cartesian two dimensional (x,y) space. We then use a transformation x = x(n,g), y = y(n,g) to change the integral I to an equivalent integral R R S f ðxðn;...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computing in Science and Engineering
دوره 2 شماره
صفحات -
تاریخ انتشار 2000